• Keep up to date with Ausbb via Twitter and Facebook. Please add us!
  • Join the Ausbb - Australian BodyBuilding forum

    If you have any problems with the registration process or your account login, please contact contact us.

    The Ausbb - Australian BodyBuilding forum is dedicated to no nonsense muscle and strength building. If you need advice that works, you have come to the right place. This forum focuses on building strength and muscle using the basics. You will also find that the Ausbb- Australian Bodybuilding Forum stresses encouragement and respect. Trolls and name calling are not allowed here. No matter what your personal goals are, you will be given effective advice that produces results.

    Please consider registering. It takes 30 seconds, and will allow you to get the most out of the forum.

lower limb muscle activation during different leg press angles

MaxBrenner

New member
Analysis of muscle activation during different leg press exercises at submaximum effort levels. Analysis of muscle activation during dif... [J Strength Cond Res. 2008] - PubMed - NCBI

Abstract
Many studies have analyzed muscle activity during different strength exercises. Although the leg press (LP) is one of the most common exercises performed, there is little evidence of lower limb muscle activity patterns during this exercise and its variations.

Thus, this study aimed to verify how mechanical changes and loads affect lower limb muscle activity during the performance of different LP exercises. Fourteen women performed 3 LP exercises: 45 degrees LP (LP45), LP high (LPH), and LP low (LPL) at 40% and 80% of the 1 repetition maximum. The electromyographic activity of the rectus femoris, vastus lateralis, biceps femoris, gastrocnemius, and gluteus maximus was recorded.

Results suggested that mechanical changes affect lower limb muscle activity and that it is related to the load used. At moderate effort levels, the rectus femoris and gastrocnemius were more active during the LP45 and LPL than during the LPH. At a high effort level, the rectus femoris and vastus lateralis (quadriceps) were more active during the LPL than the LPH. Again, the rectus femoris and gastrocnemius were more active during the LP45 and LPL than the LPH. On the other hand, gluteus maximus activity was greater during the LPH than the LPL.

This study found that coordination patterns of muscle activity are different when performing LP variations at high or moderate effort levels because of mechanical changes and different loads lifted during the different LP exercises.

These results suggest that if the goal is to induce greater rectus femoris and vastus lateralis (quadriceps) activation, the LPL should be performed. On the other hand, if the goal is to induce gluteus maximus activity, the LPH should be performed.
 
Quadriceps EMG/force relationship in knee extension and leg press. Quadriceps EMG/force relationship in kn... [Med Sci Sports Exerc. 2000] - PubMed - NCBI

Alkner BA, Tesch PA, Berg HE.
Source
Department of Orthopedic Surgery, Karolinska Institutet at Danderyds Hospital, Sweden.
Abstract
PURPOSE:
This study compared the relationship between surface electromyographic (EMG) activity and isometric force of m. quadriceps femoris (QF) in the single-joint knee extension (KE) and the multi-joint leg press (LP) exercises.

METHODS:
Nine healthy men performed unilateral actions at a knee angle of 90 degrees at 20, 40, 60, 80, and 100% of maximal voluntary contraction (MVC). EMG was measured from m. vastus lateralis (VL), m. vastus medialis (VM), m. rectus femoris (RF), and m. biceps femoris (BF).

RESULTS:
There were no differences in maximum EMG activity of individual muscles between KE and LP. The QF EMG/force relationship was nonlinear in each exercise modality. VL showed no deviation from linearity in neither exercise, whereas VM and RF did. BF activity increased linearly with increased loads.

CONCLUSIONS:
The EMG/force relationship of all quadricep muscles studied appears to be similar in isometric multi-joint LP and single-joint KE actions at a knee angle of 90 degrees. This would indicate the strategy of reciprocal force increment among muscles involved is comparable in the two models. Furthermore, these data suggest a nonuniform recruitment pattern among the three superficial QF muscles and surface EMG recordings from VL to be most reliable in predicting force output.
 
Top